Sign patterns that require a positive or nonnegative left inverse

نویسندگان

  • In-Jae Kim
  • Bryan L. Shader
  • BRYAN L. SHADER
چکیده

An m by n sign pattern A is an m by n matrix with entries in {+,−, 0}. The sign pattern A requires a positive (resp. nonnegative) left inverse provided each real matrix with sign pattern A has a left inverse with all entries positive (resp. nonnegative). In this paper, necessary and sufficient conditions are given for a sign pattern to require a positive or nonnegative left inverse. It is also shown that for n ≥ 2, there are no square sign patterns of order n that require a positive (left) inverse, and that an n by n sign pattern requiring a nonnegative (left) inverse is permutationally equivalent to an upper triangular sign pattern with positive main diagonal entries and nonpositive off-diagonal entries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sign Patterns That Allow a Positive or Nonnegative Left Inverse

An m by n sign pattern S is an m by n matrix with entries in {+,−, 0}. Such a sign pattern allows a positive (resp., nonnegative) left inverse, provided that there exist an m by n matrix A with the sign pattern S and an n by m matrix B with only positive (resp., nonnegative) entries satisfying BA = In, where In is the n by n identity matrix. For m > n ≥ 2, a characterization of m by n sign patt...

متن کامل

Eventually Nonnegative Matrices and their Sign Patterns

A matrix A ∈ Rn×n is eventually nonnegative (respectively, eventually positive) if there exists a positive integer k0 such that for all k ≥ k0, A ≥ 0 (respectively, A > 0). Here inequalities are entrywise and all matrices are real and square. An eigenvalue of A is dominant if its magnitude is equal to the spectral radius of A. A matrix A has the strong Perron-Frobenius property if A has a uniqu...

متن کامل

Sign Patterns That Require or Allow

A matrix A is power-positive if some positive integer power of A is entrywise positive. A sign pattern A is shown to require power-positivity if and only if either A or −A is nonnegative and has a primitive digraph, or equivalently, either A or −A requires eventual positivity. A sign pattern A is shown to be potentially power-positive if and only if A or −A is potentially eventually positive.

متن کامل

On the nonnegative inverse eigenvalue problem of traditional matrices

In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.

متن کامل

Ela Sign Patterns That Require or Allow Power - Positivity

A matrix A is power-positive if some positive integer power of A is entrywise positive. A sign pattern A is shown to require power-positivity if and only if either A or −A is nonnegative and has a primitive digraph, or equivalently, either A or −A requires eventual positivity. A sign pattern A is shown to be potentially power-positive if and only if A or −A is potentially eventually positive. 1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008